Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
J Biosci ; 2011 Jun; 36(2): 223-228
Article in English | IMSEAR | ID: sea-161536

ABSTRACT

Late embryogenesis abundant (LEA) protein family is a large protein family that includes proteins accumulated at late stages of seed development or in vegetative tissues in response to drought, salinity, cold stress and exogenous application of abscisic acid. In order to isolate peanut genes, an expressed sequence tag (EST) sequencing project was carried out using a peanut seed cDNA library. From 6258 ESTs, 19 LEA-encoding genes were identified and could be classified into eight distinct groups. Expression of these genes in seeds at different developmental stages and in various peanut tissues was analysed by semi-quantitative RT-PCR. The results showed that expression levels of LEA genes were generally high in seeds. Some LEA protein genes were expressed at a high level in non-seed tissues such as root, stem, leaf, flower and gynophore. These results provided valuable information for the functional and regulatory studies on peanut LEA genes.

2.
Electron. j. biotechnol ; 13(5): 6-7, Sept. 2010. ilus, tab
Article in English | LILACS | ID: lil-591888

ABSTRACT

Microsatellites, or simple sequence repeats (SSRs), in expressed sequence tags (ESTs) provide an opportunity for low cost SSR development. We looked for EST-SSRs in 403,511 ESTs (generated by 454 sequencing and representing 70,654 contigs and 52,082 singletons) from soybean globular stage embryos. Among 122,736 unique ESTs, 3,729 contained one or more SSRs. In total, 3,989 SSRs were identified including 304 mono, 1,374 di, 2,208 tri, 70 tetra, 13 penta and 20 hexanucleotide SSRs. Thirty three EST-SSRs were selected for primer design and polymorphism analysis using twenty soybean cultivars and one wild-type soybean. Successful amplification was obtained using 21 of these primer pairs, 11 of which detected polymorphisms in these soybean cultivars. These results demonstrated that 454 high throughput sequencing is a powerful tool for molecular marker development. From the 3,989 identified SSRs we expect to obtain a large number of makers with polymorphism among different soybean cultivars, which would be useful for analysis of genetic diversity and maker assisted selection in the soybean breeding programs.


Subject(s)
Expressed Sequence Tags , Glycine max/genetics , Genes, Plant , Genetic Markers , Microsatellite Repeats , Polymerase Chain Reaction , Polymorphism, Genetic , Sequence Analysis, DNA
3.
Electron. j. biotechnol ; 13(3): 7-8, May 2010. ilus, tab
Article in English | LILACS | ID: lil-577102

ABSTRACT

Making use of the gene resources of wild type peanuts is a way to increase the genetic diversity of the cultivars. Marker assisted selection (MAS) could shorten the process of inter-specific hybridization and provide a possible way to remove the undesirable traits. However, the limited number of molecular markers available in peanut retarded its MAS process. We started a peanut ESTs (Expressed Sequence Tags) project aiming at cloning genes with agronomic importance and developing molecular markers. In this study we found 610 ESTs that contained one or more SSRs from 12,000 peanut ESTs. The most abundant SSRs in peanut are trinucleotides (66.3 percent) SSRs and followed by dinucleotide (28.8 percent) SSRs. AG/TC (10.7 percent) repeat was the most abundant and followed by CT/GA (9.0 percent), CTT/GAA (7.4 percent), and AAG/TTC (7.3 percent) repeats. Ninety-four SSR containing ESTs were randomly selected for primer design and synthesis, of which 33 pairs could generate good amplification and were used for polymorphism assessment. Results showed that polymorphism was very low in cultivars, while high level of polymorphism was revealed in wild type peanuts.


Subject(s)
Arachis/genetics , Cloning, Molecular , Expressed Sequence Tags , Microsatellite Repeats , DNA, Plant/genetics , Crop Production , Arachis/growth & development , Base Sequence , Genetic Markers , Polymerase Chain Reaction , Polymorphism, Genetic , Selection, Genetic
4.
J Biosci ; 2009 Jun; 34(2): 227-238
Article in English | IMSEAR | ID: sea-161293

ABSTRACT

The cultivated peanut is a valuable source of dietary oil and ranks fi fth among the world oil crops. Plant fatty acid biosynthesis is catalysed by type II fatty acid synthase (FAS) in plastids and mitochondria. By constructing a full-length cDNA library derived from immature peanut seeds and homology-based cloning, candidate genes of acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, β-ketoacyl-ACP synthase (I, II, III), β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were isolated. Sequence alignments revealed that primary structures of type II FAS enzymes were highly conserved in higher plants and the catalytic residues were strictly conserved in Escherichia coli and higher plants. Homologue numbers of each type II FAS gene expressing in developing peanut seeds varied from 1 in KASII, KASIII and HD to 5 in ENR. The number of single-nucleotide polymorphisms (SNPs) was quite different in each gene. Peanut type II FAS genes were predicted to target plastids except ACP2 and ACP3. The results suggested that peanut may contain two type II FAS systems in plastids and mitochondria. The type II FAS enzymes in higher plants may have similar functions as those in E. coli.

SELECTION OF CITATIONS
SEARCH DETAIL